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Oberpfaffenhofen, Germany
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Abstract

We have analysed relative humidity statistics from measurements in cirrus clouds taken
unintentionally during the Measurement of OZone by Airbus In-service airCraft project
(MOZAIC). The shapes of the in-cloud humidity distributions change from nearly sym-
metric in relatively warm cirrus (warmer than −40◦C) to considerably positively skew5

(i.e. towards high humidities) in colder clouds. These results are in agreement to find-
ings obtained recently from the INterhemispheric differences in Cirrus properties from
Anthropogenic emissions (INCA) campaign (Ovarlez et al., 2002). We interprete the
temperature dependence of the shapes of the humidity distributions as an effect of
the length of time a cirrus cloud needs from formation to a mature equilibrium stage,10

where the humidity is close to saturation. The duration of this transitional period in-
creases with decreasing temperature. Hence cold cirrus clouds are more often met in
the transitional stage than warm clouds.

1. Introduction

The formation of cirrus clouds in the upper troposphere requires that the relative hu-15

midity (with respect to ice, RHi ) exceeds certain freezing thresholds. These are gener-
ally much higher than 100%; for instance, homogeneous freezing of aqueous solution
droplets at temperatures below the supercooling limit of pure water (≈ −40◦C) needs
RHi > 140% (Koop et al., 2000). Cirrus formation and its subsequent evolution into
a mature cirrus cloud (where RHi is close to saturation) affects the ambient relative20

humidity field, and it is possible to conclude on cirrus formation pathways by investiga-
tion of their ambient RHi -distribution (Haag et al., 2003). It is obvious that the humidity
within a cloud is even stronger affected by the cloud since it is directly involved in the mi-
crophysical processes. It is then clear that the microphysical processes within a cloud
shape the statistical distribution of the RHi -field. Therefore it should principally be pos-25

sible to gain insight into the microphysical processes by considering the RHi -statistics
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within clouds.
The statistical distribution of the relative humidity with respect to ice within cirrus

clouds was investigated by Ovarlez et al. (2002) using data obtained during the INCA
campaigns in the southern (Punta Arenas, Chile, 55◦ S) and northern (Prestwick, Scot-
land, 55◦ N) hemispheres, respectively. The distinction between in-cloud and out-of-5

cloud situations was made on the basis of the extinction coefficient measured with a
polar nephelometer (Gayet et al., 1997): An extinction coefficient of less than 0.05 km−1

was considered a cloud free situation. This corresponds roughly to an ice crystal con-
centration of 50–100 particles L−1 of 5 µm diameter. Ovarlez et al. (2002) found es-
sentially that two types of distributions can be well fitted to the observations. These are10

a Gaussian distribution for cirrus warmer than −40◦C and a Rayleigh distribution for
cirrus colder than −40◦C. The main point to note here is rather the symmetry of the re-
spective distribution than the type of the distribution itself (which should be considered
merely a convenient mathematical expression for the fits). Warmer clouds possess
symmetric or quasi-symmetric distributions of RHi centred about 100% (exemplified15

by the Gaussian) whereas colder clouds possess distributions of RHi with positive
skewness (exemplified by the Rayleigh distribution), i.e. they have a tail towards higher
values. This tail might be interpreted a signature of clouds in statu nascendi , where
the supersaturation has not yet relaxed to a value close to equilibrium (i.e. saturation).
Ovarlez et al. (2002) found slight differences between the in-cloud humidity distribu-20

tions obtained at the two locations, with a tendency for higher values of RHi in the
southern hemisphere.

In the present paper we analyse humidity data from another data source, namely
from the Measurement of OZone by Airbus In-service airCraft project (MOZAIC, Marenco
et al., 1998; Helten et al., 1998) and we will show that these data are consistent with25

the results of Ovarlez et al. (2002).
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2. Data handling

For the present investigation we use the statistical data of relative humidity with re-
spect to ice in the (mostly northern hemispheric) tropopause region as obtained from
MOZAIC aircraft (Gierens et al., 1999). For this data set it is not really possible to
decide whether a recording that signals supersaturation comes from cloud free air or5

from within a cirrus cloud. Thus the humidity statistics obtained from the data set
bears signatures from both cloudy and clear air. Of course, data from substantially
subsaturated air are obviously obtained in clear regions. The common characteristics
of all humidity statistics obtained from these data sets is a relatively flat exponential
distribution for the subsaturated air (i.e. 20%. RHi .80%) and a steeper exponential10

distribution in supersaturated air masses (cf. Fig 2). These characteristics can also be
found in humidity statistics obtained from the microwave limb sounder (MLS) on board
the Upper Atmosphere Research Satellite (UARS), where a cloud clearing could be
performed successfully (Spichtinger et al., 2002, 2003). Hence, the exponential parts
of the humidity statistics are characteristic for cloud free air. The signature of clouds15

in the MOZAIC data is a “bulge” around saturation (i.e. RHi ≈ 100 ± 20%). Such a
bulge is not present in the cloud cleared MLS data. Whereas we were interested in the
exponential parts of the humidity statistics in our previous papers, we will here consider
the “cloud bulge” in more detail.

The interpretation of the bulges as a cloud signature can be underpinned by taking20

a look at data from the INCA project, namely at the combination of humidity data from
the frostpoint hygrometer (Ovarlez et al., 2002) and extinction data from the neph-
elometer (Gayet et al., 1997). The combination allows to distinguish in-cloud from
out-of-cloud data records: As in the work of Ovarlez et al. (2002) we fix the cloud
threshold at an extinction of 0.05 km−1. Using all measurements in the pressure range25

200 ≤ p ≤ 600 hPa and in the temperature range 200 ≤ T ≤ 240 K, we have derived
three statistical distributions of relative humidity: inside clouds, outside clouds, and ir-
respective of cloud presence (i.e. the sum of the two others). These distributions are
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shown in Fig. 1. The relative humidity distribution of cloud free data shows the usual
characteristic of tropospheric data (see e.g. Gierens et al., 1999; Spichtinger et al.,
2002). The shape of the distribution can be described using two exponential distribu-
tions with different slopes. As we expected, there is a kink at saturation. In contrast
the distribution obtained from the cloudy data has the shape as described in Ovarlez5

et al. (2002): The distribution is centred at saturation and the frequency of occurrence
of relative humidity decreases towards lower and higher humidities. The most interest-
ing distribution for our present purpose is that obtained from the sum. This distribution
has qualitatively the same shape as the distributions obtained from the MOZAIC data:
There is the characteristic shape of the pair of exponential distributions (typically for10

tropospheric data) but there is also a bulge around saturation. This bulge is the result
of the in-cloud data which is evident from the figure.

In order to investigate the cloud bulges in MOZAIC data we treat the data in the
following way: First we run a moving average (with a window width of 5% RHi ) over
the respective distribution to reduce their statistical noise. Then we construct baselines15

representing the exponential parts of each distribution and subtract them from their
respective distribution of RHi . The residuum from this operation is the bulge alone.
This baseline is constructed in the following way: On the left and the right of the bulge
there are the exponentials with their different slopes (2 free parameters).These two
exponentials are then smoothly connected by means of an “exponential” with varying20

exponent. The varying exponent is a Fermi function centred at a value close to 100% (1
free parameter). The width of the Fermi function is adjustable (1 free parameter). The
whole baseline function is scaled with another adjustable parameter, such that there
are a total of 5 free parameters. The functional form of the baseline is then:

B(x) = N exp[−F (x) · (x − xc)] (1)25

with the Fermi function

F (x) = a +
b − a

1 + e−c(x−xc)
. (2)
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Obviously, the limiting values for large negative (subsaturation) and large positive val-
ues (supersaturation) of x − xc are a and b, respectively, which are the slopes of the
corresponding exponential distributions. xc is the value where the Fermi function is
centred, and c determines the sharpness of the transition between the two slopes a
and b. N is the scale parameter. These five free parameters ({a, b, c, xc, N}) are deter-5

mined numerically using a simple optimisation routine, that aims at minimising the sum
of squared differences between the baseline fit and the data in the two RHi regions
where the distribution is exponential.

After subtraction of the baseline the cloud bulge plus some residual noise remains
and can be studied further. This is done in the next section. Certainly, the remain-10

ing bulge is sensitive to the construction of the baseline and to the parameters. For
studying the impact of baseline construction on the bulge we have used the following
procedure: For each distribution of RHi we have constructed several baselines distin-
guished by different ranges of best fit in the exponential parts, e.g. 30–70% or 30–80%
etc. The standard range for the calculations was 40–80% RHi and 120–160% RHi .15

Within these ranges the distributions obviously follow exponential distributions. The dif-
ferent fit ranges per se imply differences in the goodness-of-fit measure χ2. Therefore

we use for comparison of the quality of the fits a normalised χ2
RHi := 100% · χ2

∆RHi were
∆RHi denotes the range within the baseline was constructed. With this variable we
are able to determine the best baseline and using the distinct baselines we can study20

the variations of baseline construction and their impact on the bulge. An example of
some different baseline fittings is given in Fig. 2.

The corresponding bulges after subtraction of these various baselines are shown in
Fig. 3.

We interprete the bulges or the difference distributions as cloud signatures and as25

distribution of relative humidity inside clouds. But, as one can see in the figures, the
residual number of events after baseline subtraction are sometimes negative, which
simply is a consequence of the fact that it is not strictly possible to discern cloudy
from non-cloudy data in MOZAIC, that is, the baselines are too close to the data. This
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indicates, that with the baselines subtracted we probably also remove in-cloud data,
especially in the supersaturated region. As (Fig. 1) shows, the slopes of the humidity
distributions above ice saturation in the in-cloud and out-of-cloud INCA data are similar,
which could mean that by the baseline subtraction we remove from all supersaturation
bins nearly a constant (but here unknown) fraction of in-cloud data. However, since5

there is no possibility to flag cloudy data, we do not see a better possibility of baseline
construction. Thus we have to accept that we miss some of the cloudy data and that
we also have negative values in the residuals, which we will set to zero for the further
analysis.

For analysis of the difference distributions we calculate the mean values, standard10

deviations and the so-called L-skewness (for a definition see the appendix). We use the
L-skewness instead of the usual skewness because of its greater robustness against
outliers (see e.g. Guttman, 1993), which is necessary here because there is still some
noise in the bulge data even after the initial smoothing. The traditional skewness is
very sensitive to such noise and can therefore not be used as a reliable measure.15

These statistical measures are calculated in the range 70–150% RHi , which per
se introduces a certain positive skewness even in a perfectly symmetric distribution
(see below). The lower boundary is considered a lower threshold where most cirrus
clouds will be evaporated completely. The upper boundary is a typical threshold for
homogeneous ice nucleation in the upper troposphere (see Koop et al., 2000); higher20

thresholds apply for still colder temperatures, but the data get more noisy, hence we
constrain the range for our calculations to 150% and do not go beyond. Since we
constrain the calculation of mean, standard deviation and L-skewness to this range
which is asymmetric with respect to saturation, we have to determine how this affects
in particular the calculation of the skewness. In order to estimate this effect we analyse25

a Gaussian (i.e. symmetric) distribution in the range 70–150% RHi with and without
an additional perturbation at 150% RHi (about 5% of the maximum). This Gaussian
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distribution

fX (x) =
1√

2πσ0

exp

(
−1

2

(
x − µ0

σ0

)2
)

is centred at µ0 = 100% RHi and the parameter σ0 = 11.25% RHi is chosen such
that the standard deviation (for the range 70–150%RHi ) is similar to those determined
for the bulges. If we now compute the statistical measures in the restricted range5

70–150% RHi , we find the mean value in the range 100.11 ≤ µ ≤ 100.19% RHi
(the greater value arises when the noise peak at 150% is added), and the standard
deviation in the range 11.10 ≤ σ ≤ 11.28% RHi . The most important result is that the
L-skewness τ3 ranges within: 0.0077 ≤ τ3 ≤ 0.0161 (for a symmetric distribution the
L-skewness is zero by definition). Hence, in the discussion of the results a distribution10

with τ3 ≤ 0.0161 can be classified as nearly symmetric, a distribution with τ3 > 0.0161
can be classified as asymmetric.

3. Results

3.1. MOZAIC data

Let us first consider MOZAIC data recorded south of 30◦ N (tropical data) between15

1995 and 1999. We show tropospheric data from four pressure levels 190–209, 210–
230, 231–245, and 246–270 hPa (hereafter levels 1–4). All these are characterised
by a rather narrow temperature distribution. The mean temperatures on the four lev-
els are −54, −49, −44, −39◦C, respectively, the standard deviations range between
2.0◦C and 3.3◦C. Hence, using these levels there is a splitting of the data in distinct20

temperature classes. After applying the procedure described in Sect. 2 we see that
for all different baseline fits the structure of the difference distributions remains mainly
the same. Hence, it is acceptable to consider the best fit for describing the structure of
the distributions. For evaluating the distributions more quantitatively we consider also
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the variations of the baseline fits, particularly the varying L-skewness. The measured
humidity distributions of the cloud bulges (after baseline subtraction of the best fit, i.e.
minimising χ2

RHi ) are presented in Fig. 4.
It can be seen that after baseline subtraction the residual number of events is rather

small compared to the original data base (cf. the numbers along the y-axis of Fig. 2).5

But nevertheless, the distributions contain a considerable fraction of the total data (13–
33%, depending on the pressure level) and the noise in the distributions is quite small
(due to the moving average of the RHi -distributions). For all distributions we see quite
the same shape: The distribution is centred around saturation, the mean values range
between 97 and 103% RHi and the standard deviations are about 11% RHi (see Ta-10

ble 1). The difference distributions obtained at the two upper pressure levels (level
1 and 2) are clearly skew (i.e. asymmetric), distributions from the two lower levels
(level 3 and 4) are symmetric. This result can be verified by the L-skewness: For the
two upper pressure levels the L-skewness τ3 takes values in the following intervals:
0.1068 ≤ τ3(level 1) ≤ 0.1310 and 0.0071 ≤ τ3(level 2) ≤ 0.0598. Hence, the differ-15

ence distributions for the upper two levels are asymmetric according to the L-skewness
(see Sect. 2). For the two lower pressure levels the L-skewness τ3 ranges between
−0.0480 and 0.0084, therefore we can assume that the distributions are nearly sym-
metric according to the L-skewness (see Sect. 2).

We now consider tropospheric MOZAIC data recorded north of 30◦ N (extratropical20

data) between 1995 and 1999 in the pressure range 175 ≤ p ≤ 275 hPa. For this data
set there is not such a sharp temperature stratification due to the pressure levels as in
the tropical data. Hence, for studying the distributions in distinct temperature classes
we split the data in the following way: One class K1 contains all data with temperatures
in the interval −55 ≤ T ≤ −50◦C, and one class K2 with temperatures in the interval25

−50 ≤ T ≤ −45◦C. Additionally, we have collected all data (including data from outside
the warm and cold classes) to a third class. A more detailed splitting of the data is not
reasonable because of the noise that then appears. In Fig. 5 the difference distributions
of the three classes (total, K1 and K2 data) are presented.
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As for the tropical data after baseline subtraction the residual number of events is
rather small compared with the original data set. But also in these cases the remaining
number of data in the difference distributions are large enough to draw some conclu-
sions although the fraction of the remaining data ranges between 2 and 8%: The total
number of data are much higher for the extratropics than for the tropics. The statistical5

noise is quite small again.
We can see a similar result as for the tropical distributions: the difference distributions

for the three data classes are again centred at saturation, the mean values range
between 98 and 106% RHi , the standard deviations range between 8 and 11% RHi .

The difference distributions obtained from the total extratropic data and the “cold10

data” are clearly skew, the distribution obtained from the “warm data” is almost sym-
metric. This is confirmed by the L-skewnesses: For the total data the L-skewness is
0.0955 ≤ τ3 ≤ 0.1178, for the “cold data” the L-skewness is 0.0882 ≤ τ3 ≤ 0.1225.
Hence, these distributions are clearly asymmetric. The L-skewness for the “warm data”
is −0.0186 ≤ τ3 ≤ 0.0524 and therefore we can conclude, that this distribution is almost15

symmetric.
The mean values, standard deviations and L-skewness values are collected in Ta-

ble 1, the L-skewness values (and their variations) are visualised in Fig. 6. In this figure
additionally the values for a Gaussian distribution and a perturbed Gaussian distribu-
tion (see Sect. 2) are shown, hence it is easy to distinguish between the symmetric and20

asymmetric distributions.
In looking at Fig. 6 one should consider the values displayed as lower estimates,

because, as stated before, the range of the computation of the moments was confined
at 150% RHi and cloud events can get lost in our baseline subtraction procedure.
Since this happens evidently more probably in the supersaturated than in the subsatu-25

rated regime, the underestimation of the true L-skewness is probably the stronger the
more asymmetric is the distribution. Thus, we expect that the true contrast between
the skewnesses for warm and cold clouds, respectively, is larger than indicated by the
error bars in the figure.
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3.2. INCA data

The INCA campaigns took place in the extratropical latitudes of both hemispheres.
Hence, we can compare the distributions of relative humidity in clouds obtained from
the INCA data set to the corresponding distributions obtained from the extratropical
MOZAIC data. As before we have picked the INCA data out of two different temperature5

classes: The class C1 contains all data in the temperature range −55 ≤ T ≤ −50◦C and
the class C2 contains all data in the temperature range −50 ≤ T ≤ −45◦C. For these two
classes we have calculated the L-skewness in the range 70–150% RHi . The values
for the two distributions (τ3(C1) = 0.1377, τ3(C2) = 0.0860) are visualised in Fig. 6.
We get the same qualitative effect as for the two difference distributions obtained from10

the temperature classes K1 and K2 (MOZAIC): For the colder clouds the distribution
is skewer than for the warmer clouds. Comparing these values with the L-skewness
obtained from the MOZAIC data (classes K1 and K2) we see that the values of MOZAIC
data are a lower approximation due to the causes mentioned in Sect. 2.

3.3. MLS data15

In order to show as a contrast to the previous data sets an example where cloud clear-
ing works effectively, we show here one example of MLS data analysis for the two nom-
inal pressure levels of 147 hPa and 215 hPa (Spichtinger et al., 2002, 2003). Figure 7
shows that for all concerned tropospheric data sets after baseline subtraction there re-
mains only noise. This can be interpreted that the cloud clearing algorithm described20

in Spichtinger et al. (2002, 2003) works very well and almost no cloudy measurements
are left in the data.

4. Discussion

Obviously there is a qualitative difference between the in-cloud distributions of RHi for
warm and cold cirrus, respectively. This contrast consists of the different shapes of the25
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distributions, namely symmetric for warm cirrus versus positively skew for cold cirrus.
This leads to the question about the physical processes (or possibly selection biases)
that produce such qualitatively different distributions of in-cloud relative humidity.

We believe that the difference we see in the humidity distributions is caused by the
temperature dependence of the length of time a cirrus cloud needs to approach sat-5

uration from an initial high supersaturation at its instant of formation. This transitional
period is about twice as long at −60◦C than at −40◦C, because both the diffusivity of
water molecules in air and the saturation vapour pressure decrease with decreasing
temperature. The nominal crystal growth time scale in a young cirrus cloud can be
written as (Gierens, 2003)10

τg = 7.14 × 105 T−1.61 p [s0 e
∗(T )]−1/3N−2/3, (3)

with initial supersaturation at cirrus formation s0, saturation vapour pressure over ice
e∗(T ) (in Pa), and number density of ice crystals formed N (in m−3). τg is in sec-
onds. Typical growth time scales range from 10 min to half an hour, however, the cirrus
transition time to phase equilibrium is more than double that quantity, in particular be-15

cause initially the condensation rate is very small since the ice crystals are very small.
This means that the transition period from cirrus formation to phase equilibrium can
make up a substantial fraction of the total cloud life time. In fact, especially thin and
sub-visible cirrus in cold air (below about 215 K) may not reach equilibrium at all, i.e.
the crystals sediment out of the cloud before the in-cloud humidity reaches saturation20

(Kärcher, 2002). This in turn implies that a substantial fraction of the cirrus clouds
probed unintentionally by a MOZAIC aircraft can still be in the transition phase. Since
the duration of the transition phase increases with decreasing temperature, the proba-
bility to probe a cirrus in the transition phase instead of the equilibrium phase increases
with decreasing temperature. From this consideration we would expect, that we find25

a slightly positively skew (or almost symmetric) distribution of RHi in warm cirrus, but
a strongly skew distribution in cold cirrus. Furthermore, the threshold supersaturation
for homogeneous nucleation grows about linearly with decreasing temperature. This
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additionally leads to a longer relaxation phase for cold than for warm clouds.
Also vertical motions have an influence on the duration of the transition to phase

equilibrium. Uplifting motions evidently prolong this period. The effect can be quantified
by using the updraft time scale, τu (Gierens, 2003):

τu = 1.67 × 10−2 w−1 T 2, (4)5

with vertical velocity w. The transition duration increases with decreasing updraft
timescale. Hence, strong vertical motion leads to an additional prolongation of the
transition period. Unfortunately, the MOZAIC data base contains no information about
vertical velocities, therefore this effect cannot be quantified. Additionally, at the same
vertical motion the transition duration increases with decreasing temperature, which10

adds to the microphysical temperature effect mentioned above.
We have performed a simple numerical exercise to simulate the transition process

without considering the dynamical effect. The simulation starts with an initial relative
humidity of 140% or 160%, and then the RHi changes in variable steps of about ±1%
according to the sign of a uniformly distributed random number. The range of the15

random number distribution is slightly asymmetric around zero such that there is always
a slightly higher chance that RHi gets closer to 100% than further away. The number
of steps is 800 for representation of a cold case, which is a suffiently small number that
the system has still a memory of its initial state, that is, it is in a transitional stage. In
this case the initial relative humidity was set to 160% RHi . For the warm case we use20

1600 steps (i.e. 2 × 800, since one step in the cold case represents about double the
time of one step in the warm case, because of the different growth time scales, see
above). It turns out that this number of steps is sufficient to loose the memory of the
initial state. In this case the initial relative humidity was set to 140% RHi . In order to
get smooth statistics, this simulation is repeated 100 000 times for each case. We find25

distributions centred close to 100% and with standard deviations close to 10% in both
cases (see Fig. 8). Both distributions are positively skew, but the L-skewness in the
cold case is 10 times larger than in the warm case, since in the cold case there is still
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a considerable tail in the RHi -distribution extending to the initial value of 160%. The
L-skewness values of the two simulations are indicated in Fig. 6 as crosses. Hence,
the values are similar to the values obtained from the difference distributions of the
different data sets. For the skewness of the distributions the main impact is due to the
number of steps, i.e. the different growth time. The initial relative humidity only slightly5

affects the skewness.
Having the INCA data it is the relatively straightforward idea to apply the baseline

fitting and subtraction also to this data set and to compare the resulting cloud bulge
with the true in-cloud distribution of relative humidity (dotted curve in Fig. 1). Although
the amount of INCA data is not sufficient to perform the complete analysis (too much10

noise!) this test gives interesting results. First, we find that the residual number of
events (i.e. the cloud bulge) only represents about 1/5 to 1/4 of the true cloud events
found by the nephelometer analysis. Such a fraction might be expected to be char-
acteristic for the MOZAIC data as well. However, the INCA derived fraction cannot
be generalised to MOZAIC in a straightforward way because of different measurement15

strategies, techniques, and hence different selection biases. Second, the out of cloud
data in Fig. 1 (dashed curve) can be fitted with a baseline function very well over the
total range from 30 to about 150% RHi (not shown), since it does not display a bulge
around saturation. This means that clouds thinner than the nephelometer threshold do
not contribute much to a bulge signature, and that the bulge mainly represents thicker20

clouds. The RHi -statistics within thin clouds therefore seems to resemble that of clear
air which can result because the relaxation time for thin clouds can be extremely long
(N small in Eq. 3). It can even be longer than the sedimentation time scale for the ice
crystals; such clouds do not reach phase equilibrium at all (cf. Kärcher, 2002).

5. Conclusions25

Statistical distributions of relative humidity with respect to ice in cirrus clouds have been
analysed. Humidity data from MOZAIC were taken, baselines were fitted to the ranges
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where RHi is distributed exponentially, and the residuals after baseline subtraction
have been investigated. The residuals, interpreted as data stemming from measure-
ments within cirrus clouds, are unimodal distributions peaked close to saturation, with
standard deviations of the order 10% in relative humidity units. The interpretation of
the residuals as cloud signatures is corroborated by corresponding features in the INCA5

data, where clouds can be detected using nephelometer data.
As in the earlier work of Ovarlez et al. (2002) the shape of the residual distribu-

tions (the cloud bulge) turned out to depend on cloud temperature. Whereas we found
nearly symmetric distributions in warm cirrus (T > −40◦C), the distributions are clearly
positively skew in colder clouds. The skewness seems to increase with decreasing10

temperature.
Our interpretation of this feature is that warm cirrus clouds probed unintentionally by

MOZAIC aircraft are mostly in a mature stage. The signature of this is a symmetric
distribution of RHi centred at saturation. On the other hand, cold cirrus probed unin-
tentionally are more often in a transitional state between their instant of formation and15

their mature stage. The signature of the transitional stage is a tail in the distribution
extending from saturation to the threshold relative humidity for freezing. The origin of
the difference lies in the different lengths of time a cirrus needs to reach equilibrium
via crystal growth after its formation at high supersaturation. The growth time scale
decreases with decreasing temperature, such that the time of transition is about twice20

as long at −60◦C than at −40◦C. This difference is reflected in the different shapes of
the humidity distributions within clouds.

Appendix: L-moments

Formal definition of L-moments:
25

For this purpose one uses sample probability weighted moments br (r = 0,1,2,3 . . .).
These moments computed from data values X1, X2, . . . Xn, arranged in increasing or-
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der, are given by

b0 :=
1
n

n∑
j=1

Xj (5)

br :=
1
n

n∑
j=r+1

(j − 1)(j − 2) . . . (j − r)

(n − 1)(n − 2) . . . (n − r)
Xj . (6)

Using these weighted moments br in combination with the coefficients of the “shifted
Legendre polynomials” one can define the so-called L-moments:5

l1 := b0 (7)

l2 := 2b1 − b0 (8)

l3 := 6b2 − 6b1 + b0 (9)
...

By combining these L-moments we can calculate some robust analoga to the usual10

higher moments in statistics (e.g. skewness or kurtosis). For our purpose only the
L-skewness is important:

L-skewness τ3 :=
l3
l2
. (10)

For calculating the L-skewness we use the method of Hosking (1990) which is based
on order statistics.15
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Table 1. Variations of mean values, standard deviations and L-skewness for the difference
distributions of the different MOZAIC data sets for distinct baseline fits as described in Sect. 2.

data µ(% RHi ) σ (% RHi ) τ3
tropical
lev. 1 96.86–99.88 10.18–10.50 0.1068–0.1310
lev. 2 97.56–102.96 10.60–12.14 0.0071–0.0598
lev. 3 98.39–100.95 10.22–11.69 –0.0480–0.0084
lev. 4 100.87–101.48 10.71–12.28 –0.0068–0.0057
extratr.
total 98.44–101.72 9.23–10.77 0.0955–0.1178
K1 103.09–105.64 9.20–10.87 0.0882–0.1225
K2 99.48–101.61 8.39–9.28 –0.0186–0.0524
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Fig. 1. Statistical distributions (non-normalised) of relative humidity wrt ice inside (dashed
line) and outside (dotted line) clouds, and the sum of both (solid line), obtained from INCA
measurements. Obviously the bulge in the “sum” distribution originates from measurements
inside clouds. It should also be noted that the slopes of the distributions at humidities above
ice saturation are similar.
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Fig. 2. Examples of some baseline fits.
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Fig. 3. Examples of the remaining bulges (or the difference distributions) after subtracting the
baseline fits in Fig. 2.
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Fig. 4. Non-normalised probability distribution of relative humidity over ice in tropospheric
tropical (south of 30◦ N) MOZAIC data, after baseline subtraction for 4 pressure levels: (a)
190–209, (b) 210–230, (c) 231–245, (d) 246–270 hPa.
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Fig. 4. Continued.
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Fig. 4. Continued.
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Fig. 4. Continued.
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Fig. 5. Non-normalised probability distribution of relative humidity over ice in tropospheric
extratropical (north of 30◦ N) MOZAIC data, after baseline subtraction: (a) total data, (b) class
K1 (−55 ≤ T ≤ −50◦C), (c) class K2 (−50 ≤ T ≤ −45◦C).
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Fig. 5. Continued.
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Fig. 5. Continued.
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Fig. 6. L-skewness of the difference distributions for the tropospheric MOZAIC data (error bars,
see also Sect. 3.1 and Table 1) and the INCA data (circles, see also Sect. 3.2). Additionally, the
L-skewness of a Gaussian distribution (without and with a perturbation of 5% of the maximum
at 150%) in the range 70–150% RHi are shown. These values can be used to distinguish
between symmetric and asymmetric distributions. The crosses represent the L-skewnesses
resulting from the two numerical experiments of Sect. 4.
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Fig. 7. Non-normalised probability distributions of relative humidity over ice, after baseline
subtraction for tropospheric MLS data: (a) tropical (south of 30◦ N) MLS data on pressure
levels 147 (solid) and 215 hPa (dashed) (b) extratropical northern hemispheric (north of 30◦ N,
solid) and southern hemispheric (south of 30◦ S, dashed) MLS data on pressure level 215 hPa.
Because of cloud clearing there remains after baseline subtraction only a flat distribution of
noise along the zero line.
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Fig. 7. Continued.
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Fig. 8. Simulation of statistical distributions of relative humidity in warm (RHihom = 140% RHi ,
1600 steps) and cold (RHihom = 160% RHi , 800 steps) cirrus clouds.
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